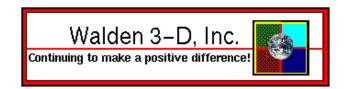


Untapped Aquifers Cedar Valley Drainage Basin

H. Roice Nelson, Jr. & Gary Farnsworth Player - Cedar City Council & Candidates Field Trip

10 August 2019

This presentation, with links, can be downloaded from: http://www.walden3d.com/IronCounty/CedarValleyWater/pdf/190310 Untapped Aquifers Cedar City Counsel.pdf



Discussing Water Rights, A Western Pastime

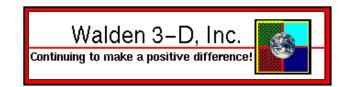
Problems and Plans

Problems (https://www.waterrights.utah.gov/groundwater/ManagementReports/CedarValley/Recharge%20Estimate%20for%20Cedar%20City%20Valley.pdf):

28,000 acre-feet per year depletion from groundwater pumping,

21,000 acre-feet per year average annual recharge

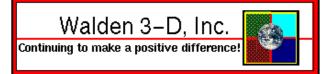
7,600 acre-feet per year over-pumping of The Aquifer +


There is 50,878.36 acre-feet Cumulative Depletion allocated for Cedar Valley.

Plans at Groundwater Plan Web Site for Cedar Valley (https://www.waterrights.utah.gov/meetinfo/m20161208/):

- Recharge aquifers.
- Retract water rights granted after 1934.
- Build a \$200-\$400 million-dollar pipeline from Wah Wah & Pine Valleys in Beaver County.
- Range management of pinon and juniper pine (https://www.waterrights.utah.gov/meetinfo/m20161208/Comments/2017-02-07%20Dave%20Curtis.pdf).
- Purifying and recycling waste water (https://www.waterrights.utah.gov/meetinfo/m20161208/Comments/2017-01-30%20Peter%20Grimshaw.pdf).
- Tap Bedrock Aquifers outside the Cedar Valley Aquifer (https://www.waterrights.utah.gov/meetinfo/m20161208/Comments/2018-04-09%20Gary%20Player.pdf).

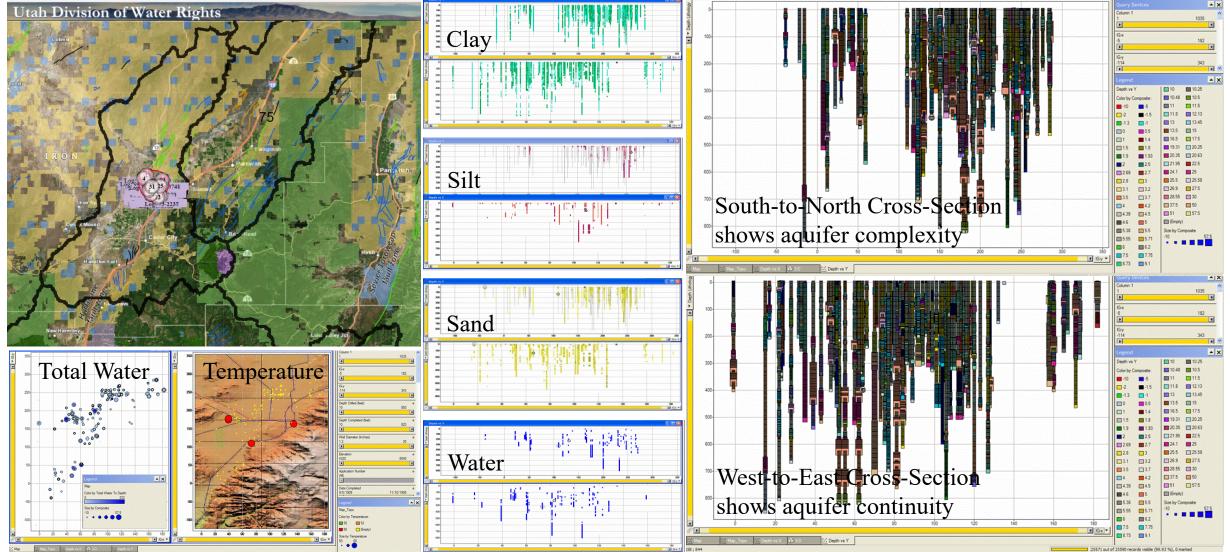
Recharging "the Aquifer"


Storage Location	(Acre feet)
Schmidt Pit	520
Airport pits	1,719
Horse Alley pits	719
*Western Rock pit	6,000
Enoch Graben	32
Quichipa	100
Total	9,990
*Approxin	nate number

- Our deficit in the valley is 7,000 so we exceeded our deficit by nearly 3,000 acre-feet.
- Cedar City, CICWCD, Iron County and Enoch City should be very proud of the accomplishments to capture this precious resource. It was inter-local agencies and the communities working together that made this possible. We will continue to push for future projects to assist in this effort.
- The results of these efforts will protect private and governmental water rights and even though it will be needed at some point it will delay the need for a very expensive pipeline from Pine Valley. Very grateful for the moisture we have been blessed with.

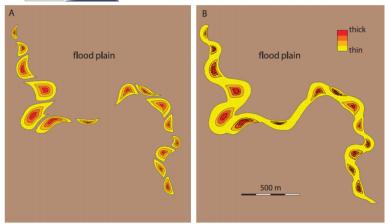
Paul Cozzens 435-590-7618

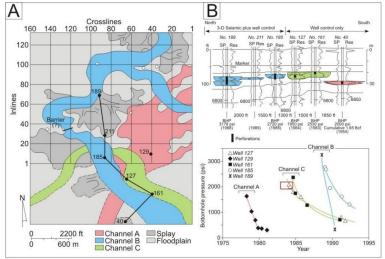
Cedar Aquifer (white) is a subset of the Cedar Valley Drainage Basin (black)


The Cedar Valley
Aquifer is a
subset of the
Cedar Valley
Drainage Basin,
and is the white
area on map to
the left.

Black areas are referred to as "Bedrock" areas.

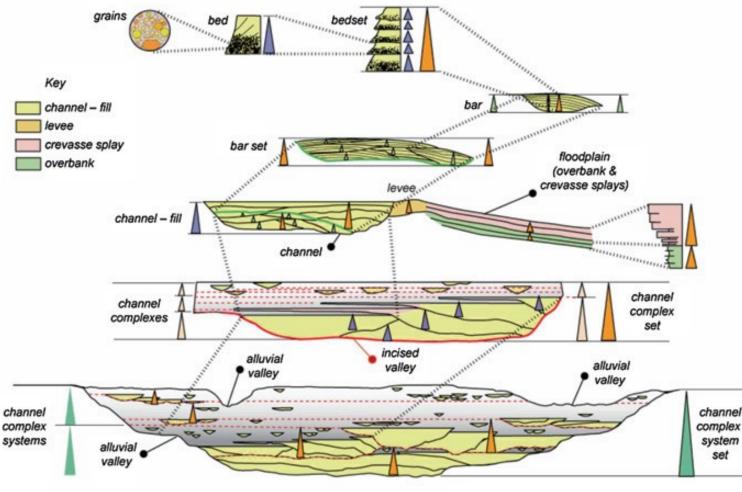
2006 Study: 145 wells, deepest 820 feet deep



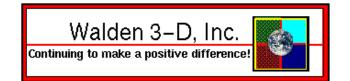

Fluvial Systems and Aquifers,

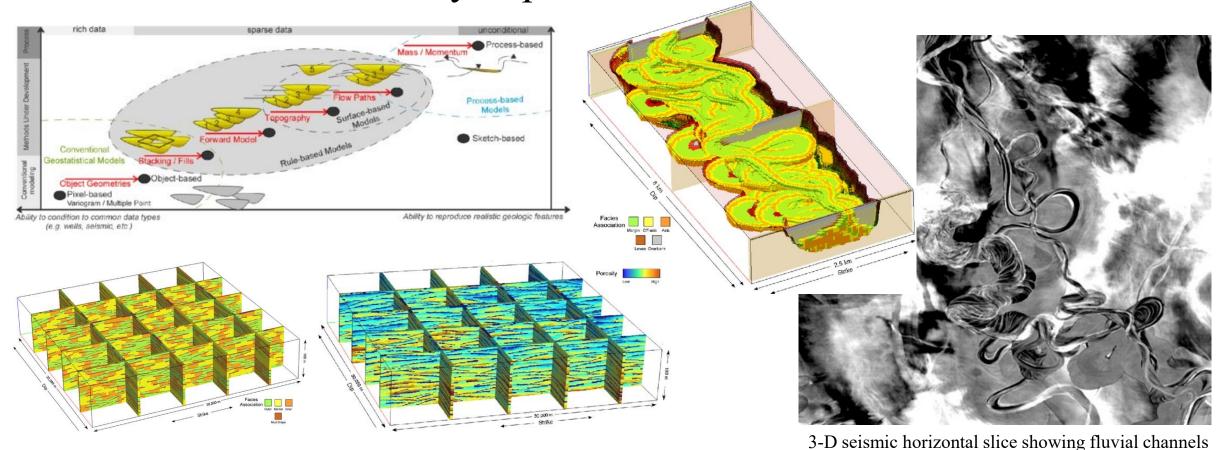
Walden 3-D, Inc.
Continuing to make a positive difference!

like the Cedar Valley Aquifer, have complex geometries



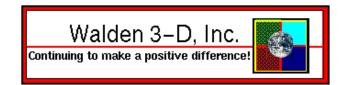
Flow Processes and Sedimentation in a Low-Sinuosity High Net-Sand Content Fluvial Channel Belt: 3D Outcrop Study of the Cedar Mountain Formation, Utah, Bradley Nuse, http://inside.mines.edu/UserFiles/File/CoRE/Thesis Dissertation/Nuse Bradley.pdf


A 3-D seismic case history evaluating fluvially deposited thin-bed reservoirs in a gas-producing property, Bob A. Hardage, et. al., Geophysics, Nov. 1994.


hierarchy of fluvial architectural elements

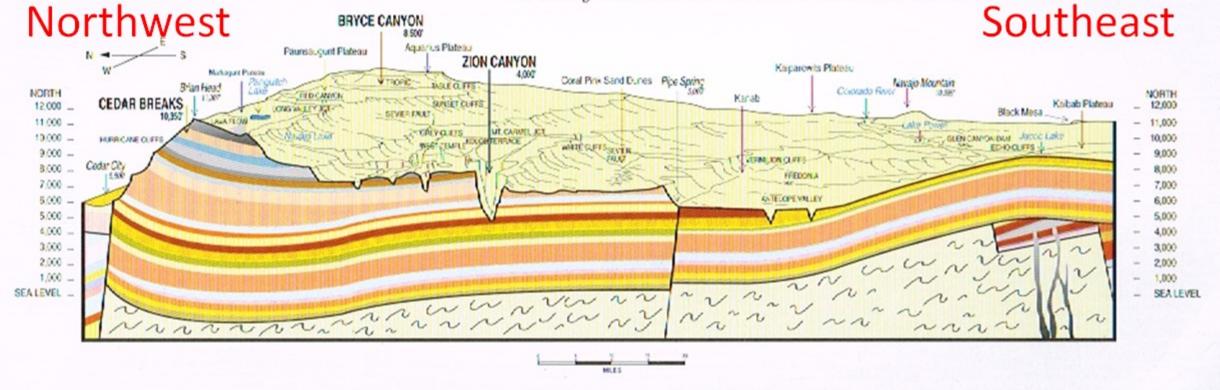
Chapter 2, The Facies and Architecture of Fluvial Systems, Figure 2.2, page 11.

Aquifers in the first 600-800 feet of the Cedar Valley Aquifer are Complex



https://www.researchgate.net/publication/303960851 Stratigraphic rule-based reservoir modeling/figures?lo=1

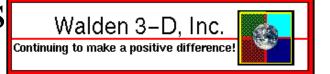
https://www.shearwatergeo.com/

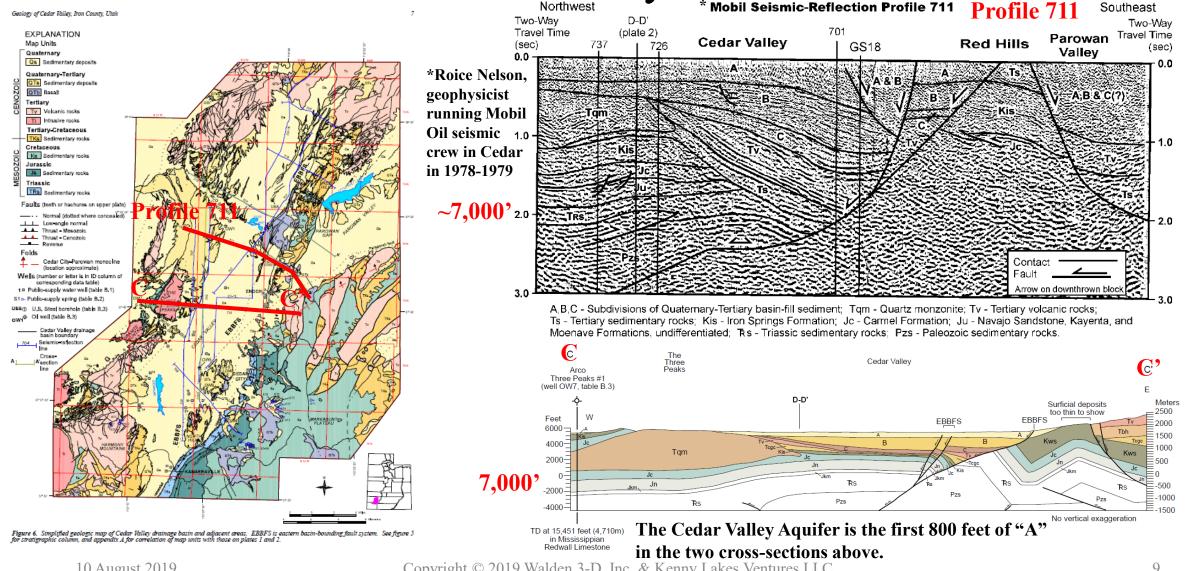


Cross-Sections Show Trends

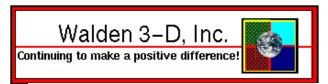
Geological Cross Section of the Bryce Canyon National Park area

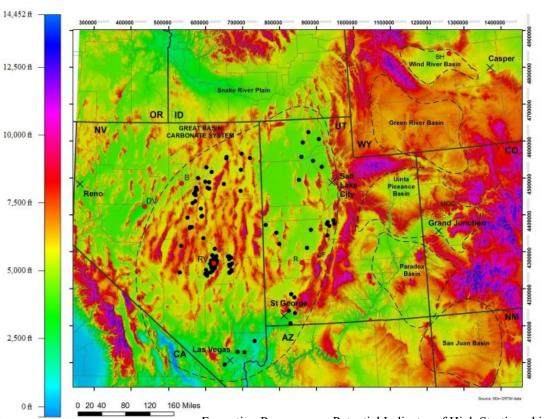
Including Cedar Breaks National Monument and Zion National Park

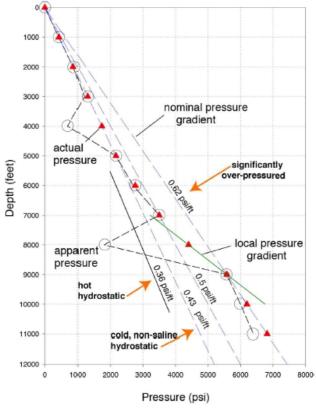



In Cedar we can drive up the Cedar Canyon to study geology faulted down underneath the valley by the Hurricane Fault.

http://www.walden3d.com/IronCounty/ig/IronCounty/IC Geologic Map.html

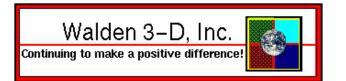

Seismic & Geologic Cross-Sections in Cedar Valley

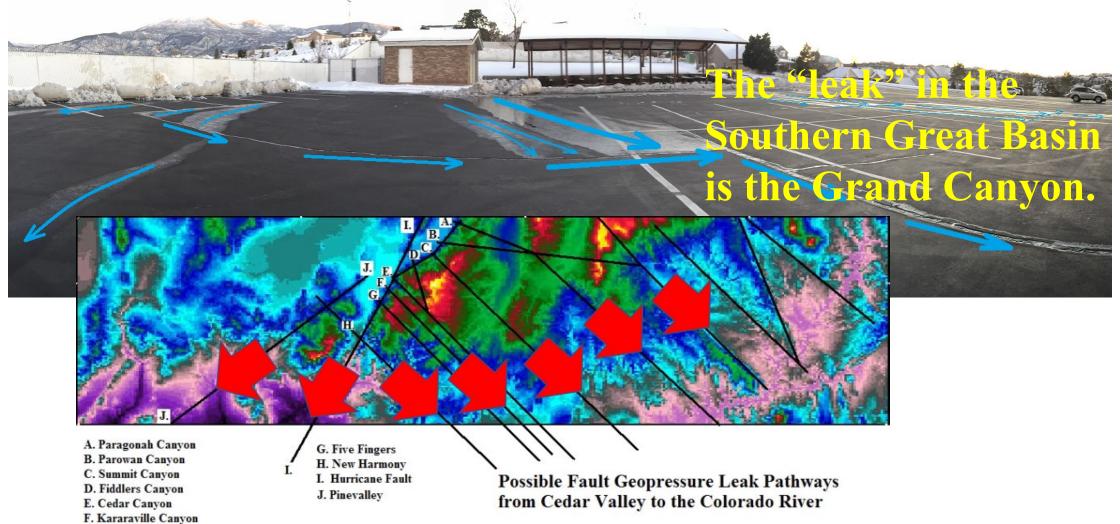



Lower Hydrostatic Pressure

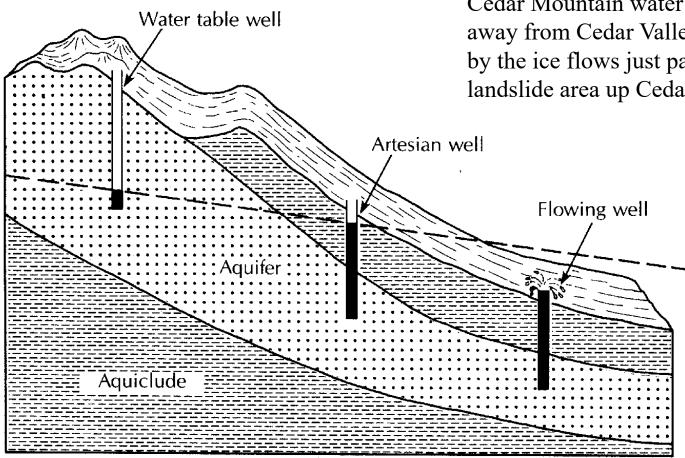
The Southern Great Basin has lower than normal hydrostatic pressure, which the same as when there is low hydrostatic pressure in a city water system, means there is a leak in the system.

The Great Basin leak is Grand Canyon.




Formation Pressure as a Potential Indicator of High Stratigraphic Permeability, Rick Allis, UGS, http://www.walden3d.com/IronCounty/CedarValleyWater/140224 Pressure Permeability Great Basin.pdf

Water Flows by Gravity and along Cracks



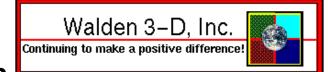
See http://www.walden3d.com/IronCounty/CedarValleyWater/ #8. at bottom of page.

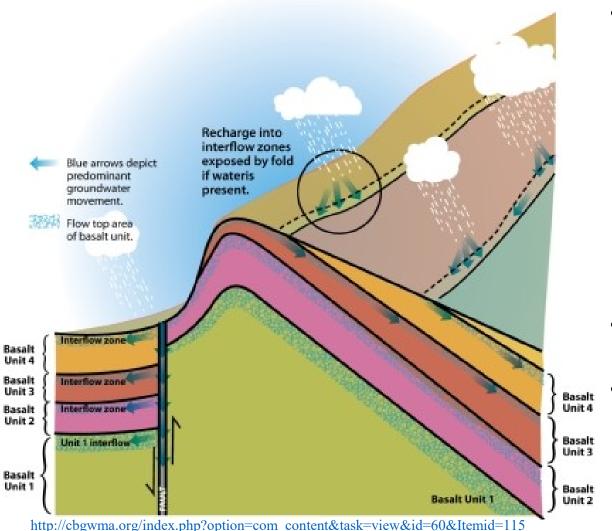
Water & the Potentiometric Surface

Cedar Mountain water flows east, away from Cedar Valley, as shown by the ice flows just past the landslide area up Cedar Canyon

Both photos west side of Highway 14

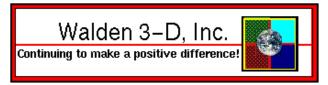
Potentiometric No ice flows on east, due to east dip. surface

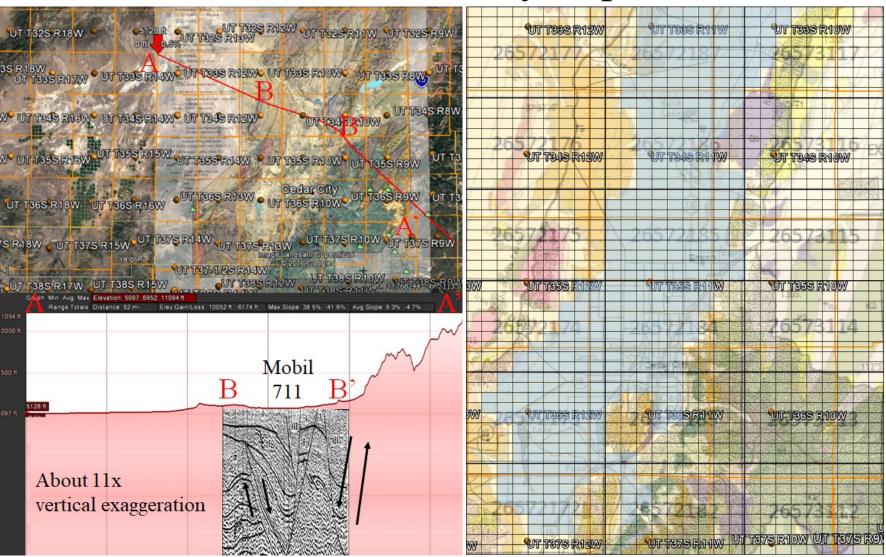

Photos by Gary F. Player


Artesian and flowing well in confined aquifer. **FIGURE 4.21**

https://www.slideshare.net/VISHNUBARUPAL/types-of-aquifer-by-bablu-bishnoi-65855846, slide 16 of 24.

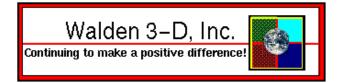
Faults & Dip Force Water Flows from Cedar Mountain East & South

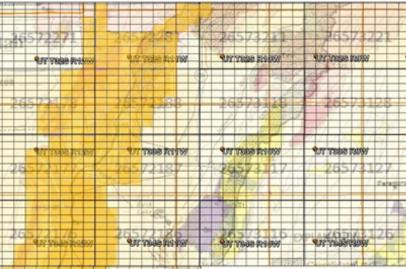

Bedrock dips to the east about 10 degrees;



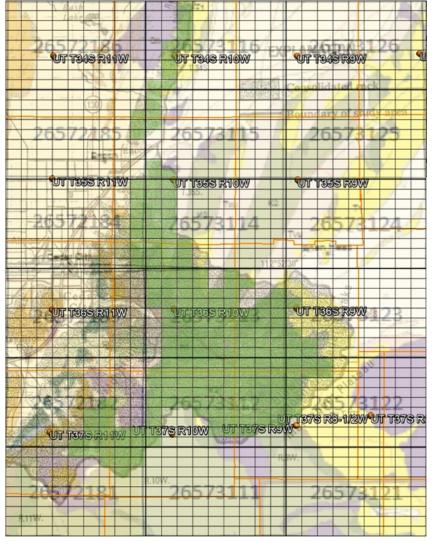
- Faults bounding the valley disrupt baseflow, especially into the Cedar Valley basin fill aquifer.
- Aquifer overproduction is very shallow (less than 800 feet depth) and except for water flowing down Coal Creek and Fiddler's Canyon these shallow layers are isolated from mountain recharge by layers of clay and the potentiometric surface dip.

The Overproduced Cedar Valley Aquifer

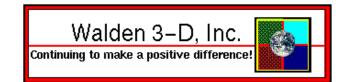


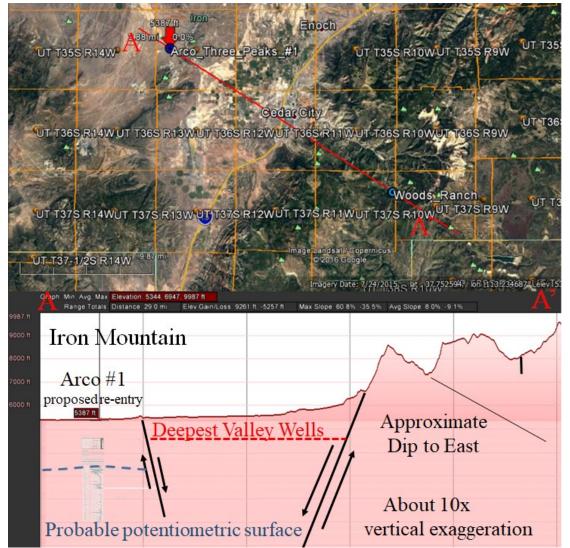

- Map and cross-section to the far left, show configuration under the Cedar Valley aquifer.
- Almost all water wells are less than 800 feet deep.
- With over a mile of sediment, only the first 800 feet have been tested with water wells and produced.
- The Cedar Valley Aquifer is shown by the blue colored squares on map just to left.
- Each colored square is about ~0.36 square miles in size. There are 421 cells covering the Cedar Valley Aquifer, or 152 sq. miles.

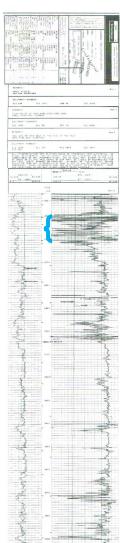
The Untapped Quartz Monzonite & Cretaceous Aquifers


The Fractured
Quartz Monzonite
Aquifer is shown
by the orange
colored squares
on the map to the
right and below.

Each gold colored square is about ~0.36 square miles in size.
There are 681 cells, or 245 square miles of untapped quartz monzonite aquifer.

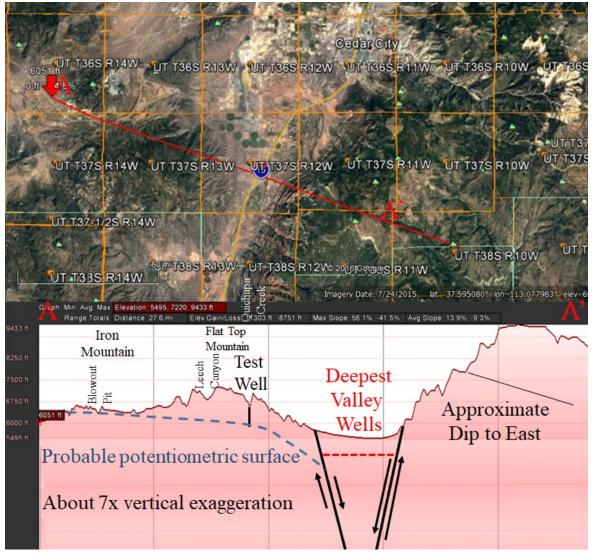

To the right, Cretaceous Aquifer is shown by the green colored map squares.


Each colored square is about ~0.36 square miles in size. There are 213 cells covering the Cretaceous Aquifer, or 77 square miles.



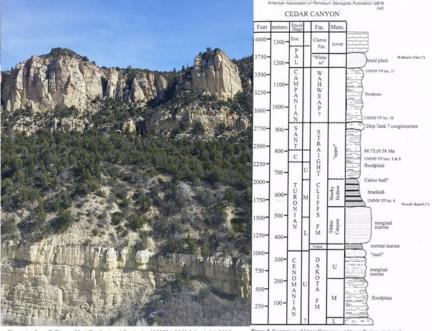
The Quartz Monzonite Aquifer

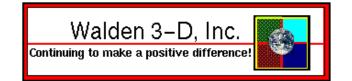


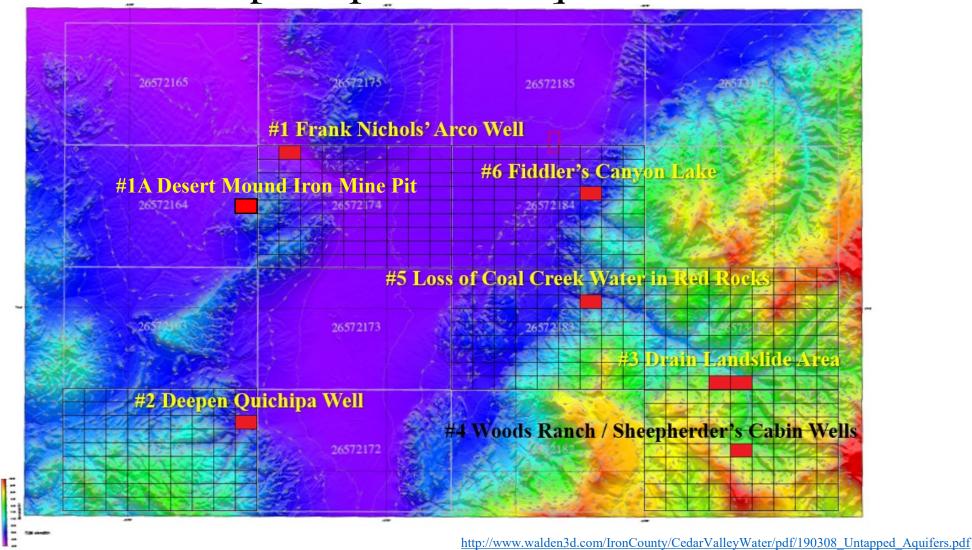

Untapped quartz monzonite aquifer at Blowout Pit, Iron Mountain.

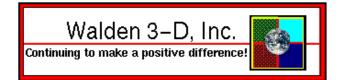
To the left are Schlumberger well log results dated 30 Jun 1984, 20 Sep 1984, and 17 Jan 1985 from a well Arco drilled at Iron Springs. The high porosity, highlighted with { in blue, is from fresh water in the fractured quartz monzonite. This fractured quartz monzonite is the same geology as the successful well drilled in Enoch against the dipping Cretaceous beds.

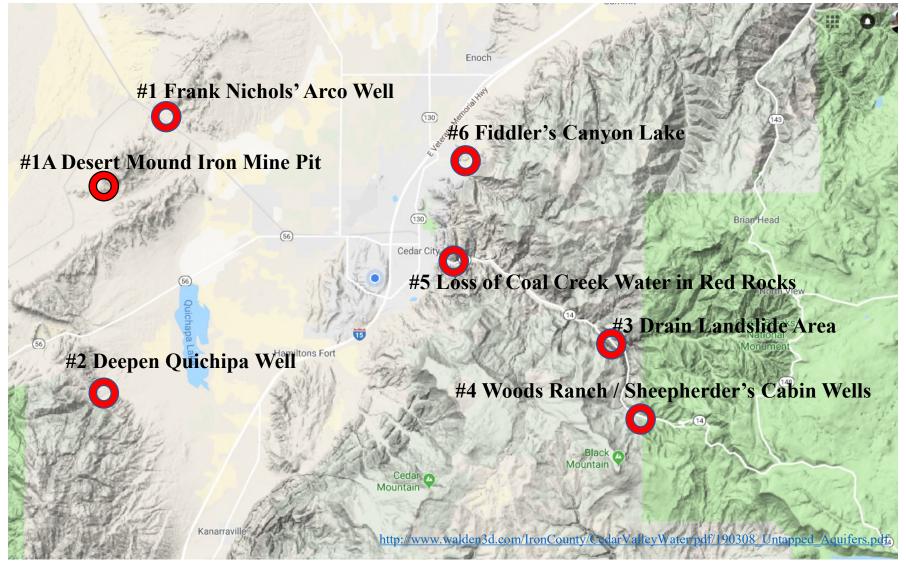
The Cretaceous Aquifer



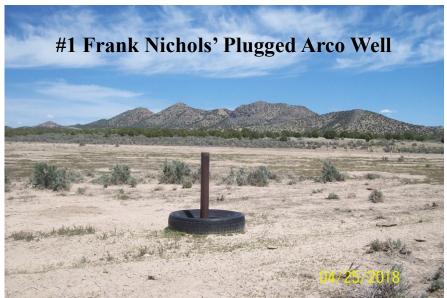

The Cretaceous Aquifer was successfully tapped at Brian Head in the city well.


The landslides are not a result of the coal mine having been here, they are a result of the coal mine not draining water off of the cliffs.


Iron County Commissioners Field Trip Stops IG5 Map



Cedar City Council and Canidates Field Trip Stops Terrain Map



15,590-foot Arco-3 Dry Oil Well

To: Frank Nichols
From: Gary F. Player
Subject: Possible Water Resources Surrounding ARCo Three Peaks No. 1
Date: November 10, 2017

Happy day before Veterans' Day! I just about completed the new casing diagram showing the locations of cement plugs in the subject well, and I couldn't stop myself from doing a little conjecturing about possible water resources.

I have drilled and reviewed dozens of wells completed in fractured granite aquifers in Utah and California, so I feel confident about assigning a very conservative likely porosity of three (3) percent. Given the known thickness of the granitic rocks at Three Peaks (3,964 feet) we can calculate the volume of potential water present in one square mile (640 acres). Here goes:

Area = 640 acres Thickness = 3,964 feet

Porosity = 03

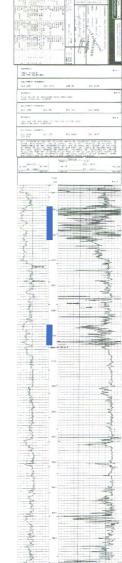
Porosity = .0.

Water volume = (640)*(3,964)*(.03) = 76,108.8 acre-feet.

The Iron Mountain granite intrusive extends over an area of about 200 square miles in Iron County, allowing an estimated water resource of (200)*(76,108.8) = 15,221,760 acre-feet. I believe that possibility is worth an inexpensive test in an existing well: The ARCo Three Peaks No. 1, now owned exhibited by the ARCo Three Peaks No. 1, now owned

Potential Quartz Monzonite Water:

500 feet

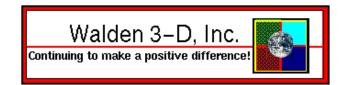

Tay F. Plays

15,221,760 acre-feet Probable Annual Recharge: 21,333 acre-feet per year

Jary F. Flayer

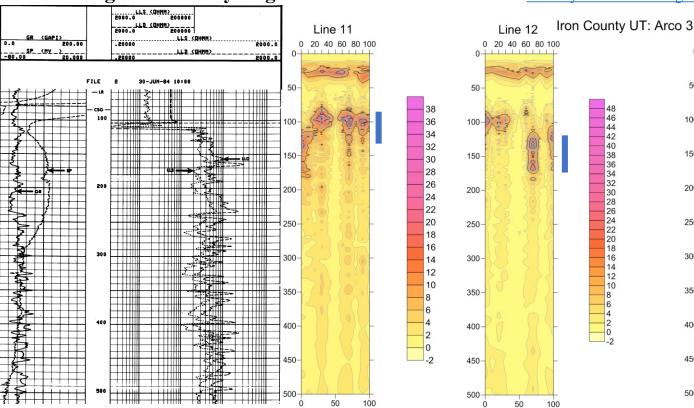
Copyright © 2019 Walden 3-D, Inc. & Kenny Lakes Ventures LLC

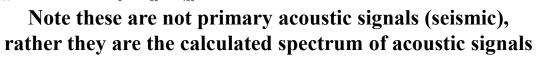
MANAGEMENT MANAGEMENT OF THE CONTROL OF THE CONTROL


- 2400 feet

- 2600 feet

- 3000 feet

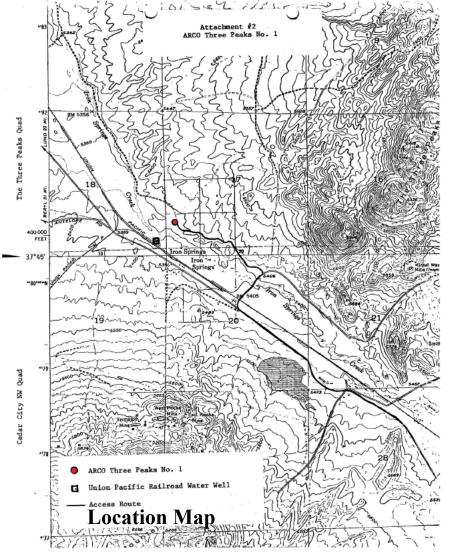

33 Traces using Mark Burr's "Passive Seismic" – 01 Mar 2019

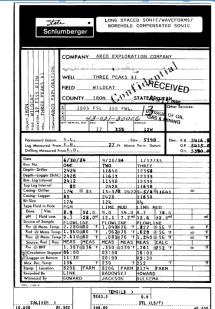

Locations of 33 "Passive Seismic" Measurements by the Arco-1 Well

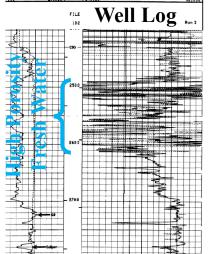
Schlumberger Resistivity Log

PrimaryWaterTechnologies.com

Line 13

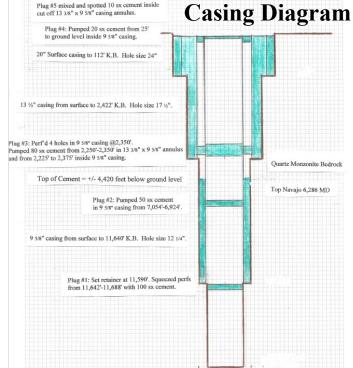

0 20 40 60 80 100




#1 Frank Nichols Arco Well

Walden 3-D, Inc.
Continuing to make a positive difference!

http://www.walden3d.com/IronCounty/CedarValleyWater/pdf/150821 Player-Nelson ARCo well Three Peaks w comments.pdf



Guesstimating cement in ARCo Three Peaks NO. 1:

- Annulus between 17 ½" hole and 13 ½" casing:
 - Open hole volume is area of 17.5 less area of 13.5, times 2422 feet area of 17.5 = pi*r2 = 240.53 square inches area of 13.5 = 143.14 square inches with a difference = 97.39 square inches, or 0.676 sq. ft.
 - Volume of annulus = 1,638 cubic feet (2,422*.676)
 - Amount of cement = 2,750 sacks, where each sack = 1.68 cubic feet
- Annulus between 12 1/4" hole and 9 5/8" casing:
 - Open hole volume is are of 12.25 less 9.625, times 11,640 feet area of 12.25 = pi*r2 = 117.86 square inches area of 9.625 = 72.76 square inches with a difference = 45.1 square inches, or 0.313 square feet.
 - Volume of annulus = 3,545 cubic feet.
 - Amount of cement = 1,400 sacks, or 2,352 cubic feet
- Ratio of amount of cement to volume of annulus = 2,352/3,545 = .66. Therefore, cement came up 2/3 of the length of the casing (11,640)*(.66) = 7,223 feet.
- The top of the cement would be at 11,640 7,223, or 4,417 feet below ground level.

Frank Nichols Water Opportunity

Walden 3–D, Inc.
Continuing to make a positive difference!

See submission response at 21.2. at http://www.walden3d.com/IronCounty/CedarValleyWater/

ARCo Three Peaks oil well drilled in SWq of the SWq of S17, T35S, R12W in 1984-1985:

- Location: Iron Springs Gap
- Potential Aquifer(s): Fractured Quartz Monzonite (Qm)
- Likely Annual Recharge: Greater than 10,000 acre-feet
- Existing Well:
 - Aguifer(s) penetrated: Qm from 2,322' 6,286' BGL (Below Ground Level)
 - Well Log(s): Dual Induction Laterolog and Sonic Log
 - Casing Diagram completed by ARCo is shown on the previous page
- The well reached a total depth of 15,590 feet without detecting any showings of oil or gas.
- The well was plugged with cement plugs and abandoned by ARCo on March 15, 1985.
- Several cement plugs were placed in the 9 and 5/8" casing: below 11, 590 feet BGL; from 7,050 feet to 6,920 feet BGL; and from 2,350 feet to 2,225 feet BGL. One last plug was set from the surface to 25 feet BGL.
- The 9 and 5/8" casing is open for potential future aquifer testing below 2,350 feet BGL.
- Frank Nichols has committed to test the quartz monzonite (Qm) aquifer with a workover rig; probably using Grimshaw Drilling in Enoch; they will set up over the hole and drill out the surface plug and the next shallow plug present from 2,225 feet to 2,350 feet BGL.
- The "sonic" log run in open hole (before casing was set) disclosed a very porous interval at the depths proposed for perforating, from 2,480 feet to 2,610 feet BGL. The porous zone is a highly fractured portion of the quartz monzonite aquifer. Water present in the Qm could enter the perforations from any other fractures present from the top of the cement in the annulus between the 9 and 5/8" casing and the bedrock (4,420') to the base of the shallow cement plug (2,350').
- Gary Player has drilled and reviewed dozens of wells completed in fractured granite aquifers in Utah and California, so feels confident about assigning a conservative and likely porosity of three (3) percent.
- Given the known thickness of the granitic rocks at Three Peaks (3,964 feet) we can calculate the volume of potential water present in one square mile (640 acres):

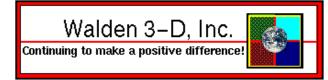
Area = 640 acres

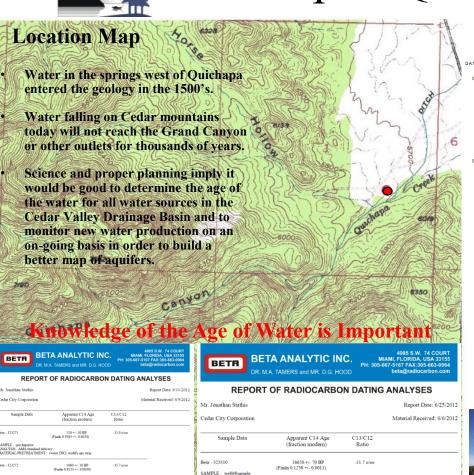
Thickness = 3.964 feet

Porosity = .03

Water volume = (640)*(3,964)*(.03) = 76,108.8 acre-feet.

• The Iron Mountain granite intrusive extends over an area of about 200 square miles in Iron County, allowing an estimated water resource of (200)*(76,108.8) = 15,221,760 acre-feet.


Wells drilled into the same Qm zone at Quichapa Creek and at the base of the Pine Valley Mountains southwest of New Harmony are very productive with high quality water. The closest well (Quichapa, Stop #2 on this Field Trip) penetrated only the first two hundred feet of the Qm, and was producing at a rate of about 150 gallons per minute by air lift while the well was being drilled. Wells at New Harmony have been pump tested at rates on the order of 2,500 gallons per minute with little drawdown. If the initial flow of water from the perforated intervals appears to be indicative of high porosity and permeability in the zone tested, then it would be appropriate to fire additional shots, and then set a 5" diameter, gravel packed slotted liner inside of the 9 5/8" casing in order to control possible entry of loose silt and sand during long term production. Exact details of the completion should be settled upon by consulting with the drilling company chosen to test and then complete the well. Grimshaw Drilling has provided Frank with a estimate of \$70,000 to reenter and hopefully complete the well. Frank has agreed to do this test, when cash flow allows. Note, this untapped aquifer goes from Pine Valley Mountain to Minersville, as shown on page 13.


Notes on Arco Well Proposal from CICWCD Geology Advisors (Player/Nelson comments):

- The fracturing within this is only on the very surface of these formations (outcrops disagree) and the likelihood of large water volumes within them is very slim (incorrect?) and if a large volume of water was found it would most likely be finite in nature (12" annual recharge) and would deplete quickly as the wells proved for the Iron Mines just south west of the proposed well.
- The individual laccoliths are formed individually and are not equally fractured. The same conclusion cannot be drawn between the granite structures in the Cedar Valley and the well that the Church drilled in the New Harmony area within the ash creek drainage. That well is located at the confluence of multiple fracture systems and has the drainage from the north end of the Pine Valley mountains (there are also multiple fracture zones in the Iron Springs Gap).
- This project as proposed would not be a new source of water and would be quite expensive to develop since the water would be pumped from depths approximately 2,500 feet deep (hydrostatic level expected to be only a few hundred feet deep). In addition to having challenges of pumping from such depths the well casing is small and you would not be able to pump more than 500 gpm from this size of well (13.5" at pump 9.5" where perforated, rates determined by testing).
- From a water rights perspective this water would come from existing water rights within the Beryl Enterprise basin. This would not be considered as a new appropriation of water since the basin is closed and has been for some time. (still new water for Beryl, well is on the boundary of the two basins, the water could be diverted either way, as CIWCD is currently pumping water further to the west. The key is to test for a new source of water which has a different age and a different hydrostatic pressure than any water in the Cedar Valley fill aquifer or the Beryl Valley aquifer).

#2 Deepen Quichipa Well

BEIH	TA ANALYTIC IN .A. TAMERS and MR. D.G. HO	PH: 305-6	4985 S.W. 74 COURT IAMI, FLORIDA, USA 33155 i67-5167 FAX:305-663-0964 beta@radiocarbon.com
REPORT	OF RADIOCARBO	N DATING	ANALYSES
Mr. Jonathan Stathis			Report Date: 6/25/2012
Cedar City Corporation			Material Received: 6/6/2012
Sample Data	Apparent C14 Age (fraction modern)	C13/C12 Ratio	
Beta - 323310 SAMPLE : well#8sample ANALYSIS : AMS-Standard deliv MATERIAL/PRETREATMENT :		-11.7 o/oo	

PROPOSED CEDAR CITY QUICHAPA CREEK NO. 1 WELL RE-ENTRY, Iron County Basemap from Stoddard Mountain USGS 1:24,000 Topographic Map

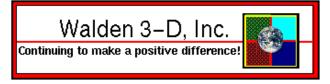
Submitted by H. Roice Nelson, Jr. and Gary F. Player

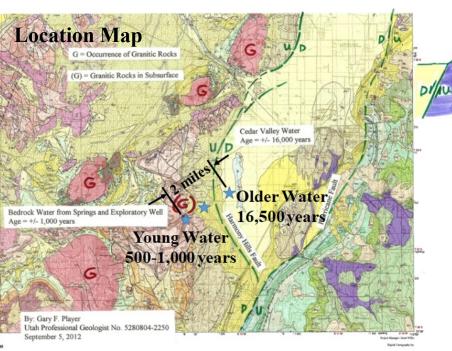
Well Log LOGGED BY WATSON ENGINEERING FROM SURFACE TO 450 FEE LOGGED BY GARY F. PLAYER BELOW 450 FEET.

N									
A	DATE	FROM		то	THICK		RATE	WATER	LITHOLOGY
H							FT/HOUR	GPM	
	05/08/12	2	450	4	60	10	3	30 GPM	QUICHAPA VOLCANICS-REDDISH BROWN ASH FLOW TUFFS. WATER ENTRY FROM ABOVE ONLY.
L			460	4	70	10	6	0 30 GPM	SAME
			470	4	75	5	4	10 30 GPM	SAME
			475	4	85	10	2	20 30 GPM	CUTTINGS SIZE INCREASING TO GRANULES AND FINE PEBBLE SIZE, FRACTURED
			485	4	90	5	2	20 30+ GPM	BASALT INTERBBEDED WITH ASH FLOW TUFF. DRILL BIT BOUNCING, WATER INCREASING SLIGHTLY
			490	4	95	5	2	20 30+ GPM	AS ABOVE
			495	5	00	5	- 1	20 30+ GPM	DEEPLY WEATHERED QUARTZ MONZONITE, WHITE, CLAYEY, WITH TRACES OF RED-BROWN ANDESITE
									LAST FOOT OF CUTTINGS ARE FULL OF WHITE CLAY, DRILLED SLOWLY BUT SMOOTHLY. WATER INCREASING. TOP OF
4									GRANITE MAY BE WEATHERED EROSION SURFACE COVERED BY BASALT EXTRUSION AT BASE OF QUICHAPA GROUP.
)									STOPPED TO REAM OUT HOLE TO 8" AND GET PERMISSION TO CONTINUE TO 700 FEET.
-									
	05/11/12	2	501	5	07	6	6	0 50+ GPM	CIRCULATED OUT FILL. COARSE FRACTURED MATERIALS-MIX OF VOLCANICS AND QUARTZ MONZONITE. WHITE CLAY
			507	5	12	5	6	50	GRANITIC QUARTZ MONZONITE CUTTINGS INCREASED TO 50%.
de			512	5	17	5	4	18	GRANITIC CUTTINGS TO 75%
1			517	5	22	5	2	25	GRANITIC CUTTINGS TO 80%. NO INDICATIONS OF ANY ROUNDINGANGULAR CHUNKS
11			522	5	27	5	3	87 60+	SLIGHT PINK TINGE TO QUARTZ MONZONITE. QUARTZ XTALS TO 4 MM. WATER INCREASING GRADUALLY
71			527	5	32	5	3	37	PLAGIOCLASE PHENOCRYSTS TO 4 MM IN PINKISH GROUND MASS
1			532	5	37	5	3	33	AS ABOVE
1			537	5	42	5	3	33 75+	AS ABOVE, SLIGHTLY MORE FRACTURES; 20% DARK MINERALS IN PINKISH TO WHITE QM. BIOTITE AND PYROXENES
1 1			542	5	47	5	3	30	QM FRESH AND HARD, A FEW WHITE, MOSTLY PINKISH GRAINS OF QM, AS AT PINE VALLEY MTNS.
4			547	5	52	5	3	80 80+	AS ABOVE, FRACTURED AT 549. DRILLING AIR PRESSURE UP TO 130 PSI-STARTED TODAY AT 120 PSI.
5			552	5	57	5	3	37	AS ABOVE
3			557	5	62	5	3	30	FRACTURES 561-562
1			562	5	67	5	6	50	FRACTURES 562-567+ IN QM
1			567	5	72	5	3	80	FRACTURES CONTINUING IN QM. WATER INCREASING. MICROCRYSTALLINE WHITE QUARTZ LINES FRACTURES.
5			572	5	77	5	3	80 90+	FRACTURES CONTINUING IN QM. WATER INCREASING. PINKISH QM MICROCRYSTALLINE WHITE QUARTZ LINES FRACTURES.
17			577	5	82	5	3	35	FRACTURES CONTINUING IN QM. WATER INCREASING. MICROCRYSTALLINE WHITE QUARTZ LINES FRACTURES.
0			582	7	02	120	10-6	0 120+GPM	QUARTZ MONZONITE, AS ABOVE, VARYING FROM LIGHT GRAY TO REDDISH BROWN (WHERE WEATHERED) TO PINK
10									LOCALLY FRACTURED. WATER BEARING.
٤									

NOTE: WELL REMAINED IN FRACTURED QUARTZ MONZONITE TO 702 FEET BELOW GROUND. MEASURED AIR PRESURE INCREASED TO OVER 200 PS WATER PRODUCTION RATE MEASURED (ESTIMATED WITH A 5 GALLON BUCKET DIPPED INTO STREAM) AT ABOUT 120 GALLONS PER MINUTE BELOW 650 FEET

Florida based Beta Analytics age dated the water with Carbon-14, have done 500,000 dates, and have 20,000 clients. \$595 per sample with 14 day delivery. 305.667.5167.

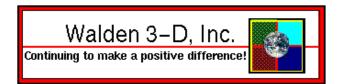

1	Water			J	
2	WATER STORED IN H				
3	WITHIN CEDAR VALL	EY DRAINAGE	BASIN OF UTAH DEP.	ARTMENT OF WA	TER RIGHTS
4					
5	GARY F. PLAYER	27-Jan-18			
6					
7	AREA		TOWNSHIPS		
В	AREA		SQ. MILES		
9	AREA	14446.08			
0	AREA	629,271,245	SQ. FEET		
1					
2	GROSS THICK.		FEET	MINIMUM	
3	GROSS THICK.		FEET	LIKELY	
4	GROSS THICK.	2000	FEET	MAXIMUM	
5					
6	IGNEOUS		VOL/VOL	MINIMUM	
7	IGNEOUS		VOL/VOL	LIKELY	
8	IGNEOUS	1	VOL/VOL	MAXIMUM	
9					
20	POROSITY		VOL/VOL	MINIMUM	
1	POROSITY		VOL/VOL	LIKELY	
22	POROSITY	0.05	VOL/VOL	MAXIMUM	
23					
4	VOLUME OF WATER			POROSITY	
25	MINIMUM		ACRE-FEET		
26	LIKELY		ACRE-FEET		
7	MAXIMUM	1,444,608	ACRE-FEET		
28					
9	LIKELY VOLUME OF G			SECTIONS:	
30		433,382	ACRE-FEET		
11					
12	ANNUAL INFILTRATI				
13	PRECIP.		INCHES PER YEAR	MINIMUM	1.42 FEET
34	PRECIP.		INCHES PER YEAR	LIKELY	1.58 FEET
15	PRECIP.	21	INCHES PER YEAR	MAXIMUM	1.75 FEET
36					
37	AREA		TOWNSHIPS		
18	AREA		SQ. MILES		
39	AREA		ACRES		
10	AREA	629,271,245	SQ. FEET		
11	DIEH TO A TION		VOLUM	VOD CD	
12 13	INFILTRATION		VOL/VOL	MINIMUM	
13	INFILTRATION		VOL/VOL	LIKELY	
	INFILTRATION	0.15	VOL/VOL	MAXIMUM	
15					
16	ANDRIAL DIPLEMENT OF LOW	ON - AREA - P	DECIDITATION & DOT	TD A TION	
17	ANNUAL INFILTRATI			LIKATION	
18 19	MINIMUM		ACRE-FEET		
	AVERAGE		ACRE-FEET		
50	MAXIMUM	3,/92	ACRE-FEET		
51	THE VIOLENT OF A	ADDIAL DESIGN	ED A TION I DIDED 33 CE	COTIONIO	
3	LIKELY VOLUME OF A			CHONS:	
14		2,287	ACRE-FEET		

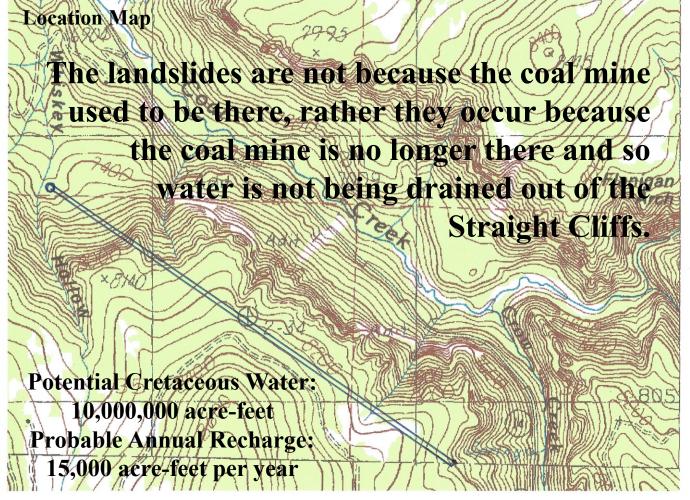


Age of Water and Harmony Hills

See submission response at 21.4. at http://www.walden3d.com/IronCounty/CedarValleyWater/

- 1. Harmony Hills
- 2. Location: Southwest of Quichapa Lake. Test well drilled just east of the intersection of two tributaries of Quichapa Creek.
- 3. Potential Aquifer(s): Fractured Quartz Monzonite (Qm)
- Likely Annual Recharge: on the order of 2,500 acre-feet within Cedar City aquifer boundary; much greater (10,000 acre-feet or more) within entire mountain range.
- Existing Well
 - a. Materials penetrated: Quichapa volcanics (Tq) and fractured Qm.
 - b. Well Log: Tq from 0 495', Qm from 495' 702' (total depth).
 - c. Casing History:
 - i. Cedar City was able to install casing to 275 feet in the well in order to seal off the shallow aquifer. However, the
 - well bore below the casing collapsed before water could be sampled from the granitic aquifer.


 Now that easing is in place, the well should be deepened to at least 1,000 feet, "under regard?"
 - ii. Now that casing is in place, the well should be deepened to at least 1,000 feet, "under reamed" out to no less than 6" diameter, cased with a slotted liner from 500 feet to total depth, and tested with a multi-stage, slim hole, submersible or top drive pump.
 - iii. Once these additional steps are completed, the County will have a better knowledge of the potential water supply that could be obtained from the fractured quartz monzonite aquifer.
- Water Quality: Visual observations during drilling showed increasing amounts of available water with depth, with the greatest quantity (about 125 150 gallons per minute) estimated at 702 feet (total depth). However, the specific yield of the fractured granitic aquifer discovered in the well was not determined with a brief, shallow test. Similarly, the true chemical nature of water from the granitic aquifer was not disclosed by sampling only the shallower "cascading" water source.
- 7. Water sampled from the shallower "cascading" water source (a thin sandstone layer within the Quichapa Volcanics) was virtually identical in age and water quality to the water now being produced from fractured Quichapa Volcanics at Spilsbury Springs.

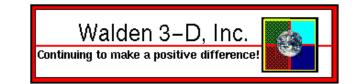

Notes on Quichapa Creek well Re-Entry from CICWCD Geology Advisors (Player/Nelson comments):

- This project will affect the overall system much the same as the Arco well re entry project. (It is proposed to test the Quartz Monzonite, and not in the Beryl Valley Aquifer Water Rights Area).
- The supposition that additional water is existent at these lower depths is incorrect. (Based on what? Science or conjecture?) The water from these lower depths would be connected to the existing aquifer that we currently draw water from (Check the age of the water). The infiltration rates discussed in the Fractured Quartz Monzonite Aquifer are not realistic and are an over simplified method of determining recharge. (Nelson has worked several oil & gas fields tied to natural fracture permeability. The issue is the water moves a long distance, the oil and gas cones out, the water comes and comes.).
- The Quartz Monzonite is formed from the laccoliths that are essentially big bulges of granite that have surfaced in a bulge in different areas where the soils above allowed. (As it cools it fractures, creating a reservoir.).
- The fracturing within this is only on the very surface of these formations (check outcrops) and the likelihood of large water volumes within them is very slim (check outcrops) and if a large volume of water was found it would most likely be finite in nature (review Ghawar, Ciudad del Carmen, Maui, and other fractured reservoirs) and would deplete quickly as the wells proved for the Iron Mines just south west of the proposed well (needs test).
- The individual laccoliths are formed individually and are not equally fractured. The same conclusion cannot be drawn between the granite structures in the Cedar Valley and the well that the Church drilled in the New Harmony area within the ash creek drainage. That well is located at the confluence of multiple fracture systems and has the drainage from the north end of the Pine Valley mountains. In addition to having challenges of pumping from such depths the well casing is small and you would not be able to pump more than 500 gpm from this size of well. (since comments are repeated, see comments above).
- From a water rights perspective this water would come from existing water rights within the Cedar basin. This would not be considered as a new appropriation of water since the basin is closed and has been for some time. (If it is demonstrated to be a different age and to have a different hydrostatic water pressure, it can be proven to be a new source of water.).

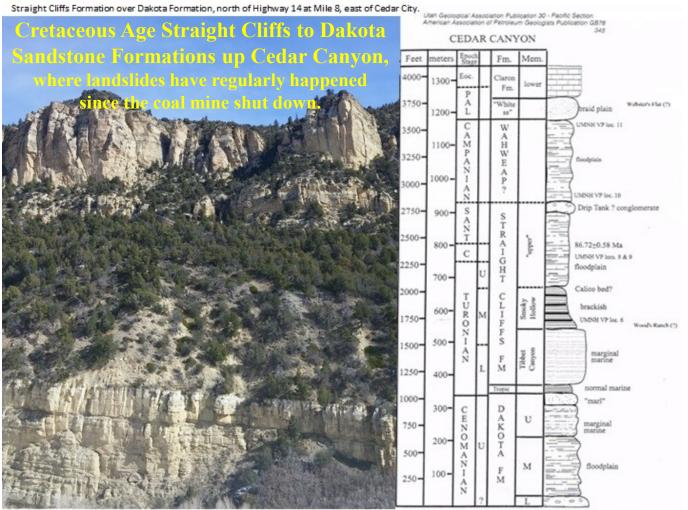
#3 Drain Landslide Area

Well to drain Cretaceous sandstones. Surface location to right of Whiskey Hollow. Horizontal Well Length = 5,665'. Surface Elevation = 7,380'. Well direction = 860° E.

Scale: 5.5" = 1 mile. G.F. Player 2/8/2018


The map to the left shows a horizontal well draining into Whiskey Hollow, then flowing into Coal Creek. Jay Grimshaw suggested a horizonal well from the east base of the landslide to the west to drain the rubble beds at the base of the landslide.

The plan is to eliminate future landslides caused by water buildup in the old mine adits and natural fractures southwest of and above the right of way. UDOT expressed some interest in these ideas. Additional benefits could be the addition of water to Coal Creek in the dry times of the year.

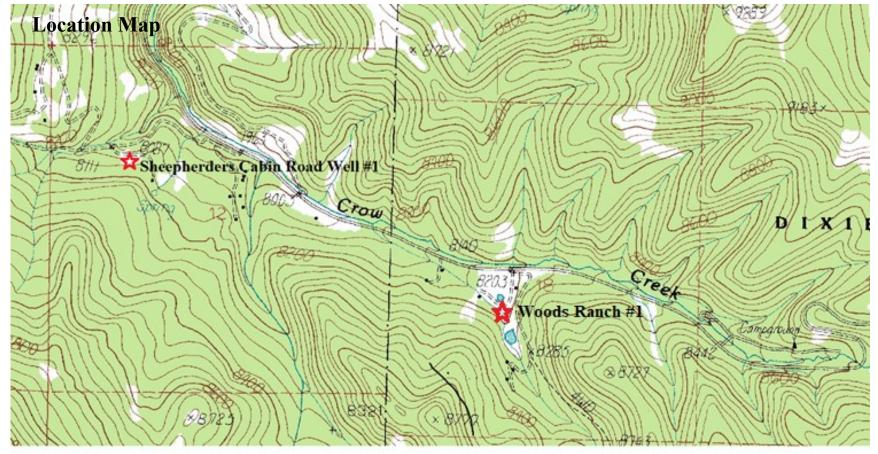

Player & Nelson took Jay Grimshaw on a field trip, where we learned Grimshaw Drilling can drill horizontally in bedrock. Jay did not like the idea of drilling from above the landslide and deviating the well underneath the highway to empty water into Coal Creek. All of the fractures in the Straight Cliff Formation create a significant risk of water escaping from of the drill hole, and coming out of the cliff above the landslide area and creating problems for the road.

Outcrop Photo and Stratigraphy

See submission response at 21.3. at http://www.walden3d.com/IronCounty/CedarValleyWater/

Photoby Gary F. Player, Utah Professional Geologist 5280804-2250, March 14, 2015

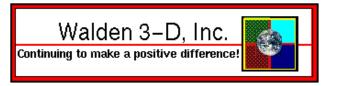
Figure 5. Comparison of Upper Cretaceous and lower Tertiary stratigraphy in Cedar and Parowan Canyons. The Parowan section is hung on the contact between the Claron and Grand Castle Formations.

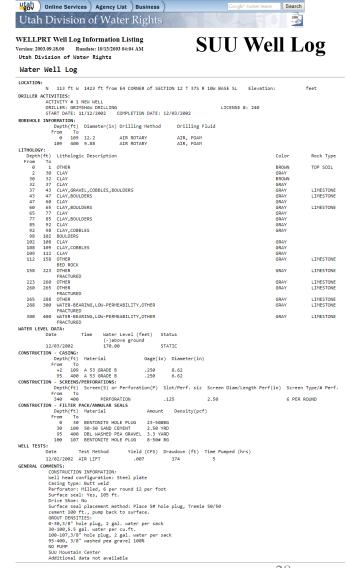

UKA PA. 30

Notes on Cretaceous Well at Sheepherder's Cabin from CICWCD Geology Advisors (Player/Nelson comments):

- This was an interesting discussion with the UGS and USGS and water resources hydro geologists (Too bad Player & Nelson were not invited).
- The water that would be withdrawn from this location would most likely be connected to springs in the area and would have a direct effect (Thick shales between springs at 9,000 feet and Woods Ranch (8,200 feet). The 20-40% porosity of these rocks implies water is moving down and out of the system and needs to be captured. Wells and springs must be measured and monitored to answer this question.).
- The geologic formation at this location is not in the same formation as the Brian Head well. This geologic zone is below Brian Head and a conclusion cannot be made that the formations would yield the same volumes of water (The Brian Head well is the top of the Cretaceous base of the Paleocene, and the proposed well is in mid-Cretaceous. This is a similar related package of rocks. Measured porosity and permeability are similar.).
- The only way that water rights could be changed to this location as a point of diversion would be to acquire the most senior rights in Coal Creek and dry up agriculture and transfer them up to the location (Is there, or is not, an overallocation of water in Cedar Valley? Would those who face losing water rights transfer them, as was done for Brian Head?).
- After pumping to the surface placing the water into coal creek as a conveyance method would be a poor use of water (Cheaper than a pipeline).
- Utilizing this water for the district would require a pipeline which would be an expensive way to convey water (See proposed Fiddler's Canyon Lake, #6). In the event that there is excess runoff water it would then be passed by and hopefully recharged into the aquifer.
- The cost of infrastructure and pumping does not equate to virtually free water (Is a \$250 million-dollar pipeline less free? Once the Cretaceous water is proven, and producing it does not dry up springs, Player & Nelson propose wells be drilled to drain the landslide area, emptying into Coal Creek).
- This example well is not at all in the same formation as the proposed well would be in (The Brian Head well produces from Upper Cretaceous sandstones).

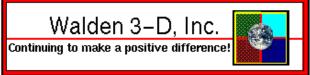
#4 Woods Ranch / Sheepherder's Cabin Wells


LOCATION MAP:


PROPOSED SHEEPHERDERS CABIN ROAD EXPLORATORY WELL #1 & WOODS RANCH #1

Basemap is Webster's Flat Topographic Map

Submitted by G.F. Player and H. Roice Nelson, Jr.


http://www.walden3d.com/IronCounty/CedarValleyWater/pdf/150824 Player-Nelson Cretaceous Well at Sheepherders w comments.pdf

Woods Ranch & Sheepherder's Cabin

See submission response at 21.3. at http://www.walden3d.com/IronCounty/CedarValleyWater/

WOODS RANCH & SHEEPHERDER'S CABIN WATER OPPORTUNITIES

- 1. Name: Woods Ranch Exploratory Well
- 2. Location: Woods Ranch County Park, Highway 14
- 3. Potential Aquifer(s): Cretaceous Straight Cliffs Sandstone (Ksc)
- 4. Likely Annual Recharge: Greater than 10,000 acre-feet
- 5. Closest Existing Well: SUU Mountain Cabin
 - a. Aquifer(s) penetrated: upper Ksc from 112' to 400' Below Ground Level (BGL)
 - b. Well Log(s): Drillers Log
 - c. Casing:

Depth(ft) Material Gage(in) Diameter(in)

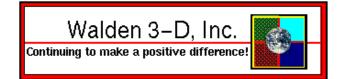
From To

+2 109 A 53 GRADE B .250 8.62

95 400 A 53 GRADE B .250 6.62

Perforations were milled in the casing from 340' to 400' below ground level. Bedrock (Ksc) was sandstone, tightly cemented with calcite (calcium carbonate), and the driller logged it as "limestone." Porosity and permeability were very low (not measured), as indicated by slow water test production of 0.007 cubic feet per second, or just 3.14 gallons per minute.

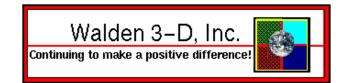
Woods Ranch "Kid's Pond" reservoir was constructed in a spring-fed fracture system. The fractures continue down slope to the parking lot, where a well could be expected to penetrate fractured and leached sandstone with much higher porosity and permeability than occur in the SUU Mountain Cabin well. This well would be a good test of whether a new well will dry up springs above it, or if the water is coming from separate aquifers.



PROOF OF WATER AVAILABILITY IN BEDROCK WITHIN DRAINAGE BASIN

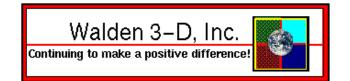
- 1. A Brian Head City well producing about 1,000 gallons per minute from Cretaceous sandstone.
- 2. An Enoch City well that produces about 800 gallons per minute from 424 feet of fractured quartz monzonite (granite) east of the Hurricane Fault System.
- 3. Cedar City exploratory well that produces about 150 gallons per minute from 250 feet of fractured granite underlying Quichapa Volcanics at Quichapa Creek (see pages 24-25); and
- 4. A private well 2 miles east of Three Peaks that produced 1,400 gallons per minute from 250 feet of fractured ("decomposed") granite with just 102 feet of drawdown during a 5-day test. The water level in the well stabilized at 10 feet below ground level immediately after the test.

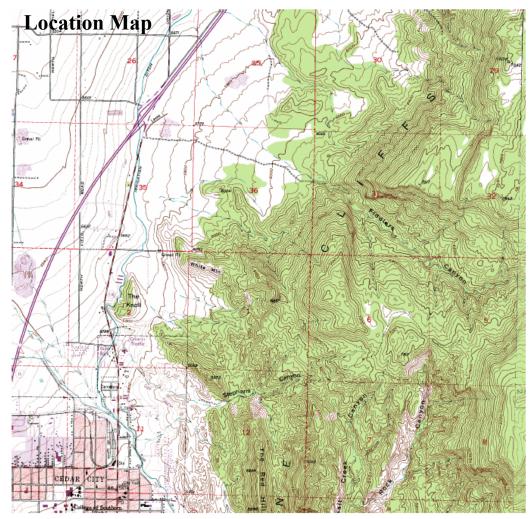
#5 Loss of Coal Creek Water in Red Rocks

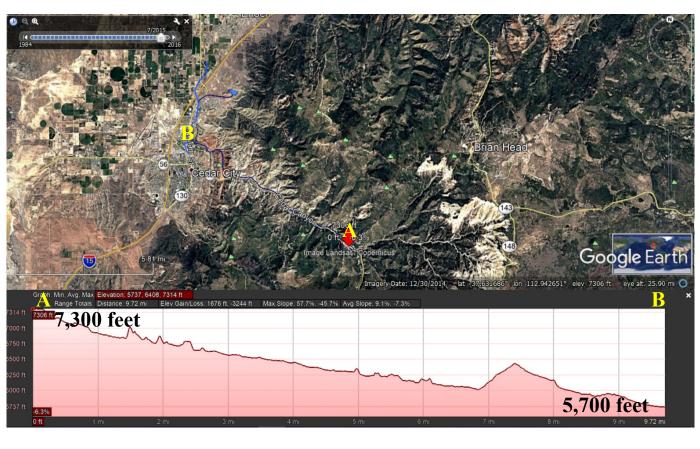


Water migrates down bedding planes. Bedding planes continue underneath the valley fill soils. Joe Armstrong contends there is 50% water loss from Coal Creek as the creek passes over the high porosity Navajo Sandstone formation.

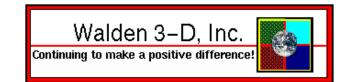
Easy to Quantify Water Loss by Seepage into the Navajo Sandstones

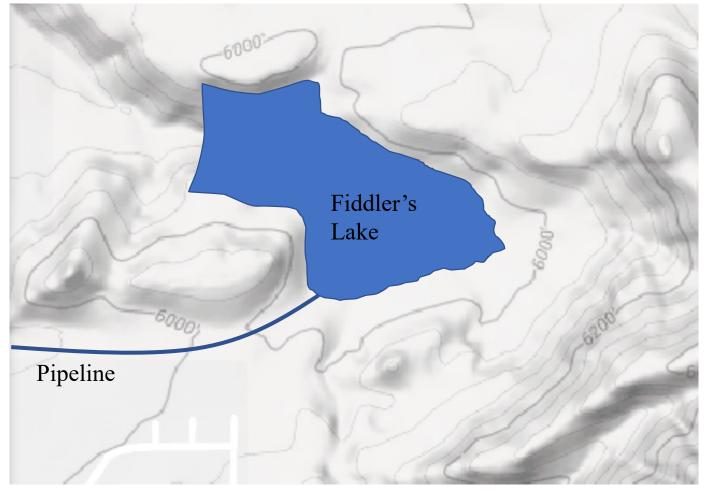


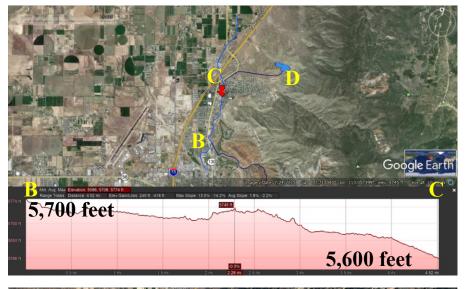

The USGS already measured water flow in Coal Creek. Measuring water flow above the Jurassic Sandstone is an easy way to determine how much, if any, water loss there is as Coal Creek crosses the bedding planes and high porosity sandstones.

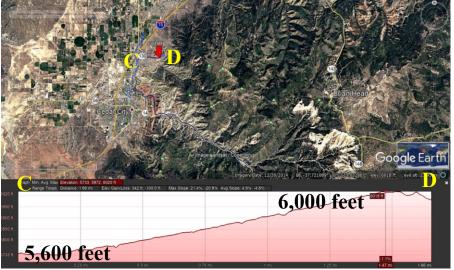


#6 Fiddler's Canyon Lake

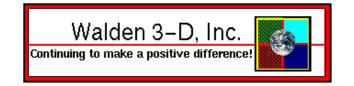





Potential Reservoir site north of Fiddler's Canyon in SW 1/4 of section 30, below the 6,000 foot elevation contour.



Proposed Lake North of Fiddlers

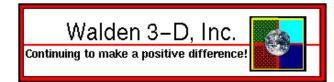


Water Isotopes and Water Age \$45/sample

Name:	Name:
Phone Number:	Phone Number:
Address:	Address:
City:	City:
Zipcode:	Zipcode:
Well Name:	Well Name:
ongitude:	Longitude:
atitude:	Latitude:
Well Depth:	Well Depth:
Sample Depth:	Date Paid \$45.:
Date Sample Taken:	Date Results Returned:
Time Sample Taken:	Date Map Returned:
Name:	Name:
Vame:	Name:
Phone Number:	Phone Number:
Address:	
Address:	Address:
Address:	Address: City:
City:	City:
City: Zipcode:	City: Zipcode:
City: Zipcode: Well Name:	City: Zipcode: Well Name:
City: Zipcode: Well Name: .ongitude:	City: Zipcode: Well Name: Longitude:
City: Zipcode: Well Name: .ongitude: .atitude:	City: Zipcode: Well Name: Longitude: Latitude:
City: Zipcode: Well Name: Longitude: Latitude: Well Depth:	City: Zipcode: Well Name: Longitude: Latitude: Well Depth:

Delivery:

- Spreadsheet Report
- H and O isotope analysis
- Value and Uncertainty
- Reference and quality control samples


Given water isotopes and water age for most of the wells in the valley, Roice will map the relationships and determine the aquifer framework.

Requires:

- Clean sample of water at point of origin (well head or as close as possible).
- Store in HDPE bottle with a gas-tight closure.
- No evaporation.
- Keep in a dark environment to limit biological activity

Water Train – Pipeline Alternative

Assumptions:

- 20 or 30 miles of new track
- 1 or 2 SD70 DC or SD900MAC locomotives
- 40,500-gallon DOT 117 Tank Car
- 100 or 200 Tank Cars
- 1 trip, 300 days per year
- Transporting 2,285 acre-feet or 4,330 acre-feet water
- 5 gallons diesel per mile at \$3/gallon

<u>Implies:</u>

- Low Cost \$24,725,000 year 1, & \$225,000 per year 2-N
- High Cost \$77,500,000 year 1, & \$900,000 per year 2-N
- Water can be transported anyplace a train goes to for humanitarian purposes, or for profit
- This provides a train for other uses in Cedar Valley, including transporting workers to use water at origin

Gary Farnsworth Player Vita

Walden 3-D, Inc. Continuing to make a positive difference!

GENERAL STATEMENT

Gary F. Player is a geologist and manager with fifty years of experience in and the environment. Married to Corrie Lynne Player, he is the father of nine grown children and forty grandchildren. Mr. Player speaks Spanish.

EDUCATION

B.S. Geology, Stanford University, 1964; M.A. Geology, UCLA, 1966

EXPLORATION SUCCESS

He has explored successfully for mineral fuels: Player has helped find more than five billion tons of coal in central Alaska, one trillion cubic feet of natural gas in Cook Inlet Basin, Alaska, and 20 billion barrels of heavy oil on the North Slope of Alaska. He recently discovered oil and gas in a frontier basin in northern California. Player has discovered significant quantities of excellent quality ground water in Utah, California, and Arizona.

GEOLOGICAL EXPLORATION SKILLS

Mr. Player has mastered the following techniques: geophysical well log analysis on mainframe and personal computers, surface and subsurface mapping, sedimentary petrology and petrography, sample and core description, reflection and refraction seismology, sandstone geometry, basin analysis, structural geology, aquifer and reservoir hydrology, drilling supervision, photo geology, computerized data bases, porosity and permeability evaluation from geophysical logs, field, and laboratory measurements, stratigraphy and regional correlation, plate tectonics, petroleum geochemistry, etc..

ENGINEERING GEOLOGY SKILLS

Player has practical experience in project management, resolution of conflicts between agencies and individuals, pipeline route surveys, municipal and industrial waste disposal, subdivision design, groundwater hydrology, active fault studies, field mapping, nuclear power plant safety analysis, drilling, hydraulic fracturing, reflection and refraction seismology, seismicity, environmental impact reports, dam site investigations, foundation engineering, slope stability, soils classification, permafrost description, glaciology, marine geology and open-pit mining.

ENVIRONMENTAL GEOLOGY SKILLS

Gary F. Player supervised multi-company teams of biologists, engineers and Most of Gary F. Player's written and oral presentations have been to the application of the earth sciences to problems in exploration, engineering, geologists monitoring construction of the Trans-Alaska Pipeline System as a proprietary audiences of employers and clients. Significant contributions consultant to the U.S. Department of the Interior. He later provided environmental inspection services for the 36" diameter Kern River Gas Transportation System in southwestern Utah. As Research Analyst at the University of Alaska's Arctic Environmental Information Data Center he joined interdisciplinary teams of scientists studying northwestern and Arctic Alaska for State and Local government agencies. As a project manager he has written and edited environmental assessments and reports for offshore oil platforms, industrial plant sites, power plants, municipal water systems, arid design landfills, power lines, and proposed pipelines.

GEOGRAPHICAL DIVERSITY OF EXPERIENCE

Gary F. Player has worked throughout the continental United States and Alaska as an explorationist and engineering geologist. He has conducted field investigations in Alaska, Arizona, California, Nevada, Oregon, Utah, Idaho, Wyoming, Texas, Oklahoma, Alabama, Florida, Pennsylvania, Arkansas, Minnesota, Wisconsin, New Jersey, Delaware, Maryland, and Illinois. He also supervised a soils investigation in Puerto Ordaz, Venezuela. Environmental Information Data Center, Anchorage, 252 p. Player, G. F., Mr. Player has studied the geology of dry lake desert basins, pull-apart basins, rifted continental margins, fore-arc basins, cratonic depressions and California. Geological Society of America, Cordilleran Section Meeting, glaciated terrains. He identified surface and groundwater resources developed by the Municipality of Anchorage. Player has studied the geology from Ground Water, American Association of Petroleum Geologists, 2007 and hydrology of Utah, Idaho, Wyoming and eastern Nevada to aid in the design and permitting of new sanitary landfills. He has discovered large resources of high quality ground water in desert basins and mountains of southern Utah. In California he has studied Los Angeles, San Joaquin, Sacramento, Ventura, Antelope Valley, Owens Valley, Surprise Valley and PROFESSIONAL REGISTRATIONS Honey Lake basins.

Since 1983 Gary F. Player has operated independent consulting firms offering services in engineering geology, water resources, waste management, public education, conflict resolution, seismology, oil and gas 1671 West 546 South, Cedar City, UT 84720 T. (435) 590-8705 exploration, and mining geology. He directs all phases of projects, including Gary Player <dirtdoctor43@gmail.com> client contacts, proposal preparation, cost analysis, technical work and billing.

PUBLICATIONS

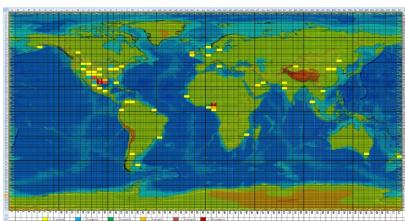
have been made in the fields of surface and groundwater exploration and development, regional and local fault patterns, alternative landfill designs for arid climates, energy minerals exploration, and methane dissolved in ground water.

Published papers include the following:

Tryck, Nyman and Hayes; Dames and Moore (G. F. Player, Project Geologist); and Leeds, Hill, Jewett, 1973, Anchorage Water Resources, for Anchorage Water Utility and Central Alaska Utilities, 307 p., 258 references. Selkregg, L., Whiteman, K., Wilson, W.J., Aho, M., and Player, G. F., 1976. Northwest Alaska Community Profiles: A Background for Planning. University of Alaska Arctic Environmental Information Data Center, Anchorage, 8 maps with descriptive folios. Wilson, W. J., Buck, Eugene H., Player, G. F., and Dreyer, L. D., 1977, Winter Water Availability and Use Conflicts as Related to Fish and Wildlife in Arctic Alaska: A Synthesis of Information. University of Alaska Arctic 1983, Petrology of the Munson Creek Phosphorite Deposit, Ventura Basin, (Abstract). Player, G. F., 2007, Economic Production of Sand Bed Methane Annual Meeting, Long Beach, California Player, G. F., and McDonald, Blair, 2010, Indications of Glaciation in Southwestern Utah and Adjacent States, Pacific Section GSA, Anaheim, California, Poster Session.

American Association of Petroleum Geologists Number 31523-5 Professional Geologist in Utah, Arizona, Idaho, and California (not active).

CONTACT INFORMATION:


H. Roice Nelson, Jr. Vita

GENERAL STATEMENT

Roice is an experienced interpretation geoscientist who has spent his career Dynamic Measurement LLC, Co-Founder / Manager, Oct 2008-Present Seismic interpretation, processing, and acquisition geophysicist. working in the international petroleum industry. As a seismic interpreter he DML established to exploit using lightning data as an on-shore and shelf has worked over 100 interpretation projects worldwide. Roice has proven success in using, creating, and building new tools and processes for the hydrocarbon exploration industry. In 2008 Roice selected 6 professionals to create a new branch in the geophysical services industry. join with him as co-founders of Dynamic Measurement, LLC (DML), and the geophysical service industry: lightning analysis.

As the initial founder of Landmark Graphics, Roice designed the interpretation software, and created a university program which placed advanced interactive interpretation systems in many universities worldwide to support research and teaching. He taught courses on interactive interpretation and new technologies for Landmark and for IHRDC all over the world. He also has a consulting company (W3D) and an exploration company (DRC) to utilize industry and proprietary tools and processes to explore for, develop, and produce natural resources: hydrocarbons, geothermal energy, minerals, etc.

The map below shows locations of many of the exploration projects Roice has worked on since 1970.

W3D Infinite GridSM Spatial Resume showing Roice's interpretation project locations.

ROICE NELSON CHRONOLOGY

NSEM (Natural Sourced Electromagnetic Method) exploration tool and to

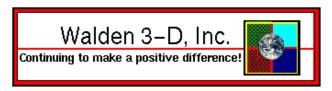
Dynamic Resources Corporation, Finder / President, Jan 2001-Present EDUCATION they have spent the last 10 years laying the groundwork for a new branch in Generate and drill or mine prospects and commercialize new technologies. Walden 3-D, Inc., Finder / President, May 1990-Present

> W3D established as a new company incubator, doing geotechnical consulting and mini-urban design. Primary companies started include DML. DRC, Walden Visualization Systems, vPatch, Advanced Structures Incorporated, HyperMedia Corporation. Completed major seismic interpretation projects on 5 continents, and developed several unique information technologies including The Infinite GridSM, The Knowledge BackboneSM, and the Abbott Atlas.

Geophysical Development Corporation (GDC), Vice-President **Interpretation Business Development, April 2004- Sep 2007**

Opened GDC China market, and helped build an integrated interpretation business. Interpretation for Ji Dong (3700 B/D, largest find in China in 10 • years), Tarim (130 BCM, 3rd largest gas field in Xinjiang), Da Qing, Xing Jiang, and Tuha Chinese Oilfields. Created GDC's TilesTM Studies.

Continuum Resources Intern'l Corp., Co-Founder, Sep 1997-Aug 2000 Demonstrated real-time simultaneous virtual reality collaboration with terabyte databases in London England, Perth Australia, and Houston.


HyperMedia Corporation, Jan 1991-2007, Co-Founder

Designed, built, and produced a UNIX, X-Windows, Motif, Client-Server hypertext engine, sold, and installed site-license to Saudi Aramco.

Landmark Graphics Corporation, Nov 1982-Sep 1992, Co-Founder Designed user interface of first stand-alone seismic interpretation

workstation software, only exploration geophysicist, worked with customers 2155 West 700 South #31, Cedar City, UT 84720 T. (713) 5420-2207 all over the world, established and ran Landmark's University Program. University of Houston's Allied Geophysical Labs (AGL) & Seismic Acoustics Lab (SAL), Jan 1980-Nov 1982, Founder, General Manager

Managed physical modeling facility at SAL, created 4 new labs.

Mobil Oil Corporation, Jul 1974-Jan 1980, Geophysicist

Amoco Corporation/Pan American Corporation, Summers 1973 & 1970 Summer Intern and Assistant Geophysicist in Denver

1981, MBA (Master's Business Administration) Southern Methodist Univ. 1974, B.S. Geophysics, University of Utah

OTHER

- Published 220+ technical papers since 1973, including the book New Technologies in Exploration Geophysics in English and Chinese. Details available on request, lightning papers can be reviewed at http://www.dynamicmeasurement.com/TAMU.
- Co-Organized 9 SEG Research Workshops, including Remote Sensing Workshop at the Anaheim, California Convention, Friday, 19 Oct 2018.
- Honorary Membership GSH (Geophysical Society of Houston).
- Enterprise Award SEG (Society of Exploration Geophysicists).
- Key Professional Societies: AAPG, EAGE, GSH, HGS, and SEG.

PROFESSIONAL REGISTRATIONS

American Association of Petroleum Geologists Number 476651 Texas Professional Geoscientist #5120 Louisiana Professional Geoscientist #879 (not active).

CONTACT INFORMATION:

Roice Nelson <melson@walden3d.com>